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Abstract. The semiclassical approach of Onsager and Pippard has been very successful in relating the
electronic properties of a normal metal to its band structure and fermi surface. This paper extends the
method to a superconductor. A generalized London equation relating the supercurrent density to the
vector potential is obtained, in terms of band and fermi surface parameters and an energy gap which
may be anisotropic. The results allow an interpretation of measured penetration depths directly in
terms of the electronic and gap structures of the superconductor. They lead to easy physical visualiza-
tion of the origin of anisotropies and other features of measured penetration depths.
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I Introduction

The standard theory [1] of the temperature-dependent penetration depth A(7) in a
superconductor assumes a spherical fermi surface with the dispersion relation
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Crx = —u (1)

where &, k, u, and m are respectively the energy (measured from the fermi surface),
Wave number, chemical potential and mass of the electron. In a real superconductor, the
ionic potential modifies the dispersion relation g;(k) and leads in general to a non-
Spherical fermi surface whose equation is

Sr(kp)=¢gy(kp)—u=0 ‘ " 2)

Where k. is the fermi wave vector. In this situation it is not immediately evident what
should be taken for the mass m and the number density n, which appear in the Lon-
don formula for the superconducting penetration depth
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A further problem arises with non-cubic superconductors, where the penetration depth
varies with the direction of the shielding current with respect to the crystal axes, and
shows crystalline anisotropy. This anisotropy is caused by a combination of the
anisotropies of the fermi surface and the superconducting energy gap. A striking and
widely studied example is provided by the cuprate superconductors. Experiments show
that 4./4,, = 5 in the yttrium-based compounds for shielding current flowing respective-
ly in the c-direction and a b-plane of the crystal. It has become the practice [2] to associate
this anisotropy with anisotropic effective masses . and i, in the London formula.

This practice carries the implicit assumption that the dispersion relation for the elec-
trons in such superconductors is ellipsoidal:
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where k,; and k¥are the components of k in the a b-plane and along the c-axis respec-
tively. Band structure calculations [3], however, lead to a totally different picture: the
fermi surface is in several sheets, none of which even approximates to an ellipsoidal
shape. It is clear therefore that one should interpret the measured penetration depths,
and their anisotropy and temperature dependence, in terms of the actual dispersion rela-
tion g, (k) as given by band structure calculations, and given gap anisotropy A, (k).
This holds of course for all superconductors.

A similar problem arises in the treatment of the electronic properties of a normal
metal with arbitrary £; and non-ellipsoidal fermi surfaces. A first-principles treatment
of the response of such a system to applied electric and especially magnetic fields en-
counters formidable difficulties [4]. An alternative, semiclassical, approach was propos-
ed by Onsager [5], and applied by Chambers, Pippard, and others [6] to an analysis of
magnetotransport and Landau quantization effects in real metals. We extend this meth-
od here to evaluate the current response in a real superconductor; the results show clear-
ly how, for example, the penetration depth A is determined by the characteristics of the
fermi surface and the energy gap in the superconductor. The method permits an easy
visualization of the phenomena in k-space and should appeal to experimenters concern-
ed with such measurements. For those who are more theoretically inclined, we might
mention that the electromagnetic response of a real metal in both the normal and super-
conducting states has been treated from a microscopic kinetic equation approach,
leading to the same results as here [7].

We illustrate the semiclassical approach in Section II by using it, following Pippard
[6], to calculate the electrical conductivity of a normal metal, which reduces to the
familiar free-electron result for the corresponding &,. We extend the approach to a
superconductor in Section III, and obtain a generalized London equation relating the
supercurrent density to the vector potential. The equation includes a backflow term in
order to conserve charge and to be compatible with gauge invariance. Some implica-
tions of this equation are discussed in Section IV, and conclusions and a summary are
presented in Section V.

11 The semiclassical approach: The normal conductivity

In order to illustrate how the semiclassical approach works, we apply it in this section
to calculate the electrical conductivity tensor for a metal with an arbitrary fermi sur-
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face. A thorough discussion of this can be found in reference [6]. We present a brief
account here for the benefit of those of today’s workers in superconductivity who may
not be familiar with this method.

We assume that the anisotropic dispersion relation g (k), the anisotropic scattering
time 7 (k), and the chemical potential x for the electrons are known. An electron of
mean wave vector k is represented by a wave packet of Bloch waves centered at k, and
its velocity v, is given by the velocity of the wave packet,

1 .
Vi = Evkak . .‘\‘ (5)

The fundamental assumption of the method is that the application of electric and
magnetic fields E and B changes the k-vector of each electron according to

d
h —+—L k=e(E+1vk><B) . 6)
dt Ty c

The justification of this equation must be found in a solution of the full quantum-
mechanical problem of the motion of Bloch electrons in the applied fields. Ashcroft
and Mermin [8] discuss this matter, and it is interesting to quote from them: “The
reader who is dissatisfied with the very incomplete and merely suggestive bases we shall
offer for the semiclassical model is urged to examine the broad array of mysteries and
anomalies of free electron theory that the model resolves. Perhaps a suitable attitude
to take is this: If there were no underlying microscopic quantum theory of electrons in
solids, one could still imagine a semiclassical mechanics (guessed by some late nine-
teenth-century Newton of crystalline spaces) that was brilliantly confirmed by its ac-
count of observed electronic behaviour, just as classical mechanics was confirmed by
its accounting for planetary motion, and only very much later given a more fundamen-
tal derivation as a limiting form of quantum mechanics.”

We now proceed to calculate the current density j produced by an electric field E.
Equation (6) can be integrated to give

ok, = %E - | 7)

for the change in k due to the field. Consider a volume element d*k of k-space at wave
vector k. We assume unit volume of sample. Then the number of electrons in d3k
before the field is applied is dn,

1
dn = P fE)d k o (8)

where f(&,) is the fermi distribution function:
SE) = @ T+ 1)~ ®

and £, =g, —u. The contribution of these electrons to the current is given by dn-ev,.
Another volume element d? k located at —k contains exactly the same number of elec-
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trons, since the dispersion relation is symmetric in k. These two volume elements make
equal and opposite contributions to the current, because the electron velocities are an-
tisymmetric in k. Thus the total current, obtained by summing over k, is zero in the
absence of a field, as is of course to be expected. _

The picture changes when the field E is applied. As a consequence of Eq. (4), each
electron state is shifted by dkg. Therefore, the electrons which now find themselves in
the element d>k at wave vector k are the ones which were in an equal element at
k— Jk before the field was applied, with energy &, — dgx, where

aek Bak eE
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& ak> E (6k> (h) & xVk (10)

Similarly the element d 3k at —k is now occupied by those electrons which previously
were in the element d>k at —(k+ Jkg) with energy &, + d&;. Now the electron popula-
tions in the two volume elements are no longer equal, and their difference results in a
net transport current djg,

Pk d’k(_2
djy = — (f(ex — O&)—S (e +O8k)) eV = _—3 Y O&revi
d3k f\ 2
=22 — = ) e?r, (vpvi) E . (11)
27(3 Bak k( k k)

The notation (v, v;) represents the tensor product of two vectors. The total transport
current is obtained by integrating over k, introducing a factor 1 to allow for the fact
that each k contributes twice to the integral:

2
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i=— Pk —— ) e (vive)E . (12)
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In component form, we have
ji = aimEm
with
e? 3 :"Bf )
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where v;; and vy, are the components of the velocity v, of the electron of wave vec-
tor k.

For a metal at temperatures 7'< T, the fermi temperature, we can use the approx-
imation " :

a
A O(ex— 1)
Bak

and convert the integral in Eq. (13) to an integral over the fermi surface:
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where dSp 1s an element of fermi surface area, Vg the velocity, and tp the scattering
time, all taken at fermi wave vector kg. Eq. (14) can be evaluated for given &g, Tk» and
u. For a free-electron fermi surface with isotropic 7. Eq. (14) reduces to the familiar
Drude result

ne2

cg=—7
m

\ .
where n and m are the '.number density and mass of the electrons.
We now look in more detail at the general expression for the conductivity tensor,
Eq. (14). We recall that the electron number density 7 is

1
n=——\d*kf(e
4n3s f( k)

and the reciprocal band mass tensor is

62
m i-l_‘nl =, = 2 Sk .
n2 ok, 0k

Neither of these quantities appears even implicitly in the expression for the conductivity
tensor. It is therefore not meaningful to talk, as has sometimes been done, about mass
anisotropies in relation to anisotropic conductivities in general. The only exception is
the case of ellipsoidal (including the special case of spherical) fermi surfaces, with
isotropic relaxation time. Even in cubic crystals, where the conductivity is a scalar, the
fermi surface is usually not spherical, and the concepts of electron effective mass and

density are not very meaningful when considering the conductivity.

III The generalized London equation

We consider a London superconductor, with a local relation between the supercurrent
density and the vector potential. We now need the analogue of Eq. (7) to describe the
response of the electrons in the superconducting state to an applied vector potential A.
We note that Eq. (7) is exact for free electrons, where the momentum p is equal to 72 k.
It therefore seems reasonable to try an analogous generalization of the London equa-
tion which holds for a free electron superconductor:

e
mv,= ——A
c

where v, is the drift velocity of the superconducting electrons. Then the generalization
to an arbitrary dispersion relation would be, by analogy with Edq. N,

Sky= ——A . - (15)
hc
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In words: The effect of a magnetic field on the Cooper-pair states in a superconductor
is to change the k-vector of each state to k+ dk,, with dk, given by Eq. (15).

The ultimate justification for Eq. (15) must flow out of a BCS theory for Bloch elec-
trons in a magnetic field. This, to the best of our knowledge, has not yet been done,
It seems reasonable to assume that the validity of Eq. (15) has the same basis as that
of Eq. (7). Further, as will be shown below, the results derived from it, when applied
to the special cases for which the BCS theory has been worked out, agree with those
results. And it can be applied in a transparent way to real fermi surfaces, which are rare-
ly free-electron-like.

We wish now to calculate the supercurrent density j, at temperature 7" in a supercon-
ductor with electronic dispersion relation &, due to an applied magnetic field derived
from a vector potential A. We use a method which parallels the one used in Section II
to calculate the normal conductivity. The supercurrent is carried only by the Cooper
pairs, whose density depends on the temperature because of the existence of thermally
excited quasiparticles.

Before proceeding with the calculation, we shall set down the assumptions on which
the model is based:

(/) The single-particle energies g, in the superconducting state are the same as in the
normal state. -~

(ii) Cooper pairs are formed between electrons in states +k and —k. We shall ignore
electron spin in what follows, since it is irrelevant for the transport supercurrent.
(éiii) There is a temperature-dependent energy gap A;, which may in general be
anisotropic.

(iv) The energy E, of a quasiparticle in state k is given by

Ef=C3+A% . (16)
(v) The quasiparticle occupancy of the state k is f(E.),

1
f(Ek)=?‘3k/_k;T_,__1 . : a7

(vi) The occupancy of the single-particle state k in the superconducting state is 7,

ng = uif(Ey)+ vill —f(E)] (18)

where ui is the probability that the pair state at k is empty, and v2 is the probability
that it is occupied. Taking note of Eq. (17), we see that the two terms on the right of
Eq. (18) are respectively the occupancies of the state k by quasiparticles and by pairs.
Using the BCS results

1
ui=— 1+55) and vi=1-ui, (19)
2 Ek '

we can rewrite Eq. (18) in the more transparent form .

ne = vi+ 2K F(EL) | 20)

E;
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We note from Eq. (20) that, as one would expect, n; changes smoothly from v‘}i at
T=0to f(g)at T=T,.

: (vii) The application of a magnetic field B = VX A changes the k-vector of each Cooper

state to k+ ok 4 with dk,4 given by Eq. (15), and therefore the corresponding single-par-

' ticle energy &, to &+ 0g;, where

Og; e
0, =—0K,4, = —— Vi A . 21
k=g k4 ok (21)

We now proceed to calculate the supercurrent. The quasiparticles do not contribute
to this current, and sp the effective occupancy which produces the supercurrent is
(n, —f(Er)), and this quantity multiplied by (1/47¥d3k-ev(k) is the contribution of
the element d>k to the supercurrent. Now consider two equal volume elements d>k at
+k and —k respectively. Before the magnetic field is applied, (n; —f(&y)) is the same
in the two elements, with velocities +v;, and —v, respectively, so that there is no net
current.

When now the magnetic field is applied, the k-vector of each state is shifted to
k+Jk 4, resulting in an imbalance between the values of the quantity (n;, —f(E,)) at
+k and —k respectively, and therefore to a net current. The number dv; of electrons
in a volume d?k at k contributing to the supercurrent is now

d*k |
dvy = P [724 (& — O&R ) — S (B — & )] - (22)

The equation uses the fact that the single-particle and excitation energies in the state
at k in the current-carrying state are (&, — d&;) and (Ej — dg;) respectively.

The number of electrons in d>k at —k which contribute to the supercurrent is
similarly given by

d*k
dv_i = 2.3 [11p (e + OEg) —S(Er+ 6g)] - : (23)
The total drift current, remembering that v, = —v_,, is obtained by adding the con-

tributions from +k and —k and integrating over k:

2
js=eS(dvkvk+dv_kv_k)= - e3 Sd3k —ank"l‘af(Ek) (vkvk)'A= —-T-A
4dn°c a&k . BEk (24)

where the symmetric tensor T is defined by

e? an, Of(E)
T= dir| ——=& k 5 25
4n3cs ( v, OE, Ceve) (22)

A factor of 1 has been included in Eq. (24) to allow for the double-counting of each
k-state in the integral. '

Eq. (24) is the generalization of the original London equation to a BCS superconduc-
tor with a general dispersion relation and at temperature 7. But it is incomplete as it
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stands, for it does not satisfy charge conservation. This is made clear by the following

argument. Consider a superconductor occupying an infinite half-space bounded by a

prlane, and an applied magnetic field parallel to the plane. Then from symmetry the cur-

rents and fields can vary only in the direction perpendicular to the plane. Taking the

wave vector q in this direction, we can write Eq. (24) in terms of Fourier components:
Jj,=—T-A,.

Charge conservation requires that

V-j=0=iq-j,= —iq-T-A, . (26)

But q-T-A, is in general not equal to zero. We also note that since the magnetic field
B is given by

B=VxA , &

a change of A to A+ Vy, where x is a scalar function of position, leaves B unchanged.
This gauge transformation in terms of Fourier components is

A= Ag+ixgd - | -

-

This transformation however changes the current, which now becomes
;= —T- (A, +ix,q -

The function x, is fixed by requiring charge conservation:
iq-j,=0,

which can be solved to give

. q-T-A
IXg= ———
q-T-q
“and finally
i, = ,(F_(T"U(“'T))-A h | 27
q-T-q

Equation (27) is gauge-invariant and conserves charge. The second term on the right
can be referred to as the backflow. We note that the backflow depends only on the direc-
tion of q, and not on its magnitude.

Egs. (25) and (27), together with the Maxwell equation

VxB=4—njs (28)
c

Al e o B a0 o
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complete the formal solution to the problem of a superconductor at temperature 7, with
anisotropic &, and A,, in a steady magnetic field.

Since the tensor in Eq. (27) is symmetric, it can be diagonalized by a transformation
to principal axes, which will coincide with axes of crystal symmetry for all cases of in-
terest. We can then write Eq. (27) in component form as

Ji= —;A4; 5 I=x32 . (29)

We note that in general ¢,,, ¢,, and ¢, depend on the unit vector §.

IV Discussion

‘An examination of Eqgs. (25) and (27) reveals the following features which can be easily

proved:

(@) For a spherical fermi surface with electron mass s and number density », and
isotropic gap, Eq. (27) reduces at 7 = 0 to the nearly familiar form

2
. ne V...
Is=——30A-44)A ' G0)
mc

{where 1 is the unit matrix), from which the London formula, Eq. (3), follows in the
Coulomb gauge

V-A=0.

(b) For an ellipsoidal fermi surface with reciprocal mass tensor a;; and electron density
n, the result at 7= 0 is, in component form,

( azk qrdray g)

Ann

with summation over repeated indices, and this reduces, for the special geometry of (d)
below and in the Coulomb gauge, to

. ne? ]
Ji= ——a;A; , i=x32 . : (31)
c

H

(c) For a general fermi surface, the result cannot be expressed in terms of an electron
band effective mass and density in any meaningful way.

(d) Referred to principal axes, and for a semi-infinite crystal bounded by a plane which
contains the vector potential and two of these axes, say x and y, Egs. (24) and (28) can
be combined to give

824, an 2A, 4n '
Xe —TuAy , —2=—T,A, (32)

az2 c oz c
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where we have used the fact that the backflow term vanishes in this geometry. Thus the
components of A, and consequently of j; decay at different rates as one goes into the
superconductor. This implies a gradual rotation of the two vectors j, and A as z in-
creases, in addition to their decay. One gets a simple exponential decay only if A is along
one of the axes, and in this case one can define penetration depths

c 172 |
Ay = , I=X,V,2 . 3

It should be noted that A; are not the components of either a vector or a tensor. We
can define an effective masses m; through

ne2

C Tﬁ

m; = (34)

where 7 is the conductionflectron density, and then we get the familiar London relation

2 \ 172
A= =5 35
i 4nne® 32

which has often been used to analyse experimental\rpsults. It should be noted that the
m;; so defined have nothing to do with band masses except in the cases (@) and ()
above; they are just a way of parametrizing experimental results which obscures their
relation to the band structure of the metal. In fact, Eq. (33) shows that if one tries to
interpret the penetration depth in terms of the London formula, one is forced to in-
troduce an effective (sn/n), with no discernible connection to the band mass or carrier
concentration.

We now look at the structure of the tensor T, Eq. (25). The integral consists of two
terms which usually are called the diamagnetic and paramagnetic terms Tp and Tp
respectively:

T=Tp—Tp
with
e> 3 on;
Tp= 4H3C§d k(_a_ek (Ve Vi) (36)
and
Tp= 4226.] d’k (“%) (Vivie) - G

We note that in each integrand the derivative is appreciably different from zero only for
values of |&;,—u| <a few times Ay, and we also have A, <u. We can therefore to an €x-
cellent approximation replace the tensor v, v, with its value at ¢; = u, namely vgVg- We
can for the same reason write

b
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dSFdSk
h Up

d3k =

where dSg and vg are respectively a constant-energy surface element and the magnitude
of the electron velocity at g, = u. We then find

e?
Tp c§ dSy jdek ( a”") YEVF - § dSp EYE (38)
h Vr
and
22
VeV a‘f-(Ek) Ek
Tp=2-———%dS dE, | — . 39
P 4n3hc§ F vp A“k k( ‘ F——(E%—A%) ( )

The factor of 2 in the last equation comes from changing the variable of integration
from g, to E,.
An inspection of Eqgs. (38) and (39) leads to the following conclusions:

(a) Tp is independent of temperature, and reflects the anisotropy of &, or equivalently
of the fermi surface.

(b) Tp vanishes as the temperature 7 tends to zero, and rises monotonically to reach
the value Tpat T=1T,.

(¢) If the energy gap is isotropic, then the anisotropy of T, is independent of tempera-
ture, and is the same as the anisotropy of Tp.

(d) If the gap is anisotropic, then the anisotropy of Ty is affected by the anisotropies
of both &, and A, and is temperature-dependent.

These conclusions can be rephrased in an obvious manner in terms of the penetration
depths A;; which are the quantities of experimental interest.

V Summary and Conclusions

Using the semi-classical model, we have derived an expression for the supercurrent j;
as a function of the vector potential A for a superconductor with arbitrary dispersion
relation g, and energy gap A,. For the special cases of spherical or ellipsoidal fermi
surfaces, the original London results are recovered. In the general case, however, it is
shown that it is not meaningful to express the results in terms of effective masses of
density of the electrons. Rather, experiments should be interpreted in terms of known
or assumed features of the electronic dispersion relations, fermi surface and energy gap.

The importance of including the backflow term in an anisotropic superconductor had
already been pointed out earlier [9]. It is derived here in the spirit of the semiclassical
model. It arises simply by requiring gauge invariance, or equivalently conservation of
charge, in an anisotropic superconductor with a spatially varying magnetic field.

A comparison of Egs. (14) and (38) leads to the interesting conclusion that in those
oxide superconductors where it is found that

T=0 0'2
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where the subscripts 1 and 2 stand for two crystal axes, the scattering time 7, must be
nearly isotropic; the anisotropy of the conductivity, as that of A, must be due to the
anisotropy of the fermi surface. And if the anisotropy of the measured penetration
depth varies with temperature, then one can conclude that the energy gap must be
anisotropic.

It is instructive to state in words the physical content of Egs. (38) and (39). At T =0,
the supercurrent response is determined solely by the diamagnetic component Tp,
which apart from a multiplicative constant is the integral over the fermi surface of the
tensor product of the fermi velocity and the vector surface element. This current is
reduced at finite temperatures by the paramagnetic component, due to the thermally ex-
cited quasiparticles which result from pair-breaking.

As an example of the usefulness of this picture, we note from the structure of the in-
tegrals for T that a flat portion of the fermi surface, if such exists, makes no contribu-
tion to the supercurrent in a direction parallel to it, and would therefore tend to increase
the penetration depth A. One can g@lso see that relatively low values of the fermi velocity
over a significant part of the fermi surface would also increase A. We suggest that a com-
bination of these factors is responsible for the rather large values of 4 which have been
reportied in the cuprate superconductors, and also in the so-called heavy electron [10]
superconductors. ]

Finally, we state the central conclusion of this work: measurements of penetration
depths in superconductors should be interpreted in terms of their band structures, fermi
surfaces and velocities, and energy gaps, rather than being parametrized into effective
masses and carrier concentrations. Such an approach provides a deeper insight into the
phenomena and also their relationships to other electronic properties.

We thank K. Andres, F. Grof3, P, Hirschfeld and H. Veith whose questions and comments helped us
in this work.
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